Abstract Submitted for the MAR13 Meeting of The American Physical Society

Frequency Regimes of Kondo Dynamics in a Single-Electron Transistor¹ BRYAN HEMINGWAY, ANDREI KOGAN, University of Cincinnati, STEPHEN HERBERT, Xavier University, MICHAEL MELLOCH, Purdue University — It has been theoretically predicted that the Kondo temperature, T_K , serves as the intrinsic timescale for the formation of Kondo correlations between conduction electrons and local spin moments. To probe this timescale, we have measured the time averaged differential conductance, $\langle G \rangle = d\langle I \rangle / dV_{ds}$, of a single electron transistor in the spin 1/2 Kondo regime in presence of an oscillating bias voltage, $V(t)=V_{ds}+V_{AC} \sin(2\pi ft)$. We present the amplitude dependent conductance over select frequencies spanning several orders of magnitude below T_K to twice T_K ($T_K \sim 16$ GHz). At frequencies above T_K , we find good agreement with theory [Kaminski, et al. Phys. Rev. B 62, 8154 (2000)] in both the low ($V_{AC} \sim$ $T_K/10$) and high ($V_{AC} \sim 10T_K$) amplitude regimes. The onset of non-adiabatic conductance behavior occurs well below prediction, f $\sim T_K$, and becomes more apparent as the frequency nears T_K .

¹Supported by NSF DMR award Nos. 0804199 and 1206784.

Bryan Hemingway University of Cincinnati

Date submitted: 09 Nov 2012

Electronic form version 1.4