Abstract Submitted for the MAR13 Meeting of The American Physical Society

Relaxation time, viscosity and scaling at densities below jamming¹ PETER OLSSON, Umeå University, Sweden — We simulate soft-core bidisperse frictionless disks in two dimensions with overdamped dynamics at zero temperature and densities below jamming. We first prepare configurations by shearing at several constant shear rates $\dot{\gamma}$. These configurations are then used as starting points for simulations without shearing that relax the system to zero energy. From these simulations we determine both the relaxation time, τ , and the average path length traversed by the particles to reach the zero energy state. We find that τ diverges algebraically as a function of density, $\tau \sim (\phi_J - \phi)^{-\beta}$, if $\dot{\gamma}$ in the preparatory simulations is sufficiently small. We further find that the shear viscosity η can be formally related to τ , and that this gives a way to understand the origin of corrections to scaling in the scaling analysis of $\eta[1]$. The presence of the exponent $\beta + y$, where $y \approx 1.1$, in the scaling of the deviations from the $\dot{\gamma} \to 0$ limit, $\eta(\phi, \dot{\gamma})/\eta(\phi, \dot{\gamma} \to 0) = f((\phi_J - \phi)^{-(\beta+y)}\dot{\gamma})$ [1], is also given an intuitive interpretation.

[1] P. Olsson and S. Teitel, Phys. Rev. E 83, 030302(R), 2011.

¹Swedish Research Council Grant No. 2010-3725. Swedish National Infrastructure for Computing at PDC and HPC2N.

Peter Olsson Umeå University, Sweden

Date submitted: 09 Nov 2012

Electronic form version 1.4