Abstract Submitted for the MAR13 Meeting of The American Physical Society

The effect of interfaces on charge transport and recombination in polymeric solar cells RONALD OSTERBACKA, SIMON SANDEN, QIAN XU¹, OSKAR SANDBERG, MATHIAS NYMAN, JAN-HENRIK SMATT², Abo Akademi University, GYTIS JUSKA³, Vilnius University — Charge-carrier transport and recombination in hybrid TiO2/P3HT:PCBM bulk-heterojunction solar cells (BHSCs) have been measured using photo-CELIV. We have fabricated hybrid devices in the form of indium tin oxide/titanium dioxide/P3HT:PCBM/Cu) to clarify the impact of the TiO₂/P3HT:PCBM interface on the charge transport using the charge extraction by linearly increasing voltage (CELIV) technique. We found that a large equilibrium charge reservoir is accumulated at negative offsets at the TiO₂/P3HT:PCBM interface leading to space charge limited extraction current (SCLC) transients. We show analytically the SCLC transient response and compare the experimental data to calculated SCLC in a linearly increasing voltage. The theoretical calculations indicate that the large charge reservoir at negative offset voltages is due to thermally generated charges combined with poor hole extraction at the ITO/TiO₂ contact, due to the hole blocking character of TiO₂. In this presentation we will discuss how interfaces, both metal-organic but also organic-organic interfaces affect charge carrier transport and recombination measurements.

Ronald Osterbacka Abo Akademi University

Date submitted: 09 Nov 2012 Electronic form version 1.4

¹Laboratory of Physical Chemistry

²Laboratory of Physical Chemistry

³Department of Solid State Electronics