Series of Abelian and Non-Abelian States in C>1 Fractional Chern Insulators

ANTOINE STERDYNIAK, CÉCILE REPPELLIN, Laboratoire Pierre Aigrain, ENS and CNRS, BOGDAN BERNEVIG, Department of Physics, Princeton university, NICOLAS REGNAULT, Department of Physics, Princeton university; Laboratoire Pierre Aigrain, ENS and CNRS — We report the observation of a new series of abelian and non-abelian topological states in fractional Chern insulators (FCI). The states appear at bosonic filling \( \nu = k/(C+1) \) (\( k, C \) integers) in a wide variety of lattice models, in fractionally filled bands of Chern numbers \( C \geq 1 \) subject to on-site Hubbard interactions. We show strong evidence that the \( k = 1 \) series is abelian while the \( k > 1 \) series is non-abelian. The energy spectrum at both ground-state filling and upon the addition of quasiholes shows a low-lying manifold of states whose total degeneracy and counting matches, at the appropriate size, that of the Fractional Quantum Hall (FQH) \( \text{SU}(C) \) (color) singlet \( k \)-clustered states (including Halperin, non-abelian spin singlet (NASS) states and their generalizations). The ground-state momenta are correctly predicted by the FQH to FCI lattice folding. However, the counting of FCI states also matches that of a spinless FQH series, preventing a clear identification just from the energy spectrum. The entanglement spectrum lends support to the identification of our states as \( \text{SU}(C) \) color-singlets but offers new anomalies in the counting for \( C > 1 \), possibly related to dislocations that call for the development of new counting rules of these topological states.