Genetic Design of Enhanced Valley Splitting towards a Spin Qubit in Silicon

LIJUN ZHANG, JUN-WEI LUO, National Renewable Energy Laboratory, ANDRE SARAIVA, BELITA KOILLER, Universidade Federal do Rio de Janeiro, Brazil, ALEX ZUNGER, University of Colorado — The quantum state of an electron in the Si conduction band holds exceptional promise for quantum computing, owing to its attractive spin coherence properties and adaptability to standard electronics. A paramount challenge is the orbital degeneracy of the lowest conduction band of Si, which is potentially a serious source of decoherence for spin qubits. Hence, isolating a single electron valley state by creating a sufficiently large valley splitting (VS) is a prerequisite for the realization of Si-based spin qubits. Previous explorations of Si quantum wells confined by Si-Ge alloy barriers led thus far to a limited VS of the order of 1 meV or smaller. Here we demonstrate, via an atomically resolved pseudopotential theory, that the monolayer ordering of Si-Ge barriers within reach of modern superlattice growth techniques can be harnessed to enhance the VS by up to one order of magnitude compared to disordered random alloy barriers. A biologically inspired genetic-algorithm search allowed us to identify magic atomic layer sequences of the superlattice barriers that isolate single electron valley state in Si with VS as large as ~9 meV. These results may provide a roadmap for reliable spin-only quantum computing in Si.

1Funded by DOE through Energy Frontier Research Center, Center for Inverse Design, and the Brazilian agencies FAPERJ, CNPq and CAPES

Lijun Zhang
National Renewable Energy Laboratory

Date submitted: 09 Nov 2012 Electronic form version 1.4