Abstract Submitted for the MAR13 Meeting of The American Physical Society

Metal-insulator and glass transitions in a 2D electron system in Si MOSFETs with a screened Coulomb interaction¹ PING V. LIN, DRA-GANA POPOVIĆ, Natl. High Magnetic Field Lab., Florida State Univ. — We present a study of conductivity σ of a 2D electron system (2DES) in Si MOSFETs with the oxide thickness $d_{ox} = 7$ nm. In the low density regime of interest, the average electron-electron (e-e) separation is larger than d_{ox} , so that the e-e interaction is screened by the metallic gate. The carrier density n_s was changed at a high temperature $T \approx 20$ K, the 2DES was then cooled to a desired T with a fixed n_s , and σ was measured as a function of time t. At the lowest n_s , in the insulating regime, transport occurs via variable-range hopping. Near the critical density n_c on the metallic side of the metal-insulator transition (MIT), the time-averaged $\langle \sigma(T) \rangle$ follows a power-law behavior, giving a reliable extrapolation of $\langle \sigma(n_s, T=0) \rangle$. The critical exponents are discussed and compared to the case of the MIT with long-range Coulomb interactions. The statistical analysis of the fluctuations in $\sigma(t)$ provides evidence for the glassy freezing of electrons for $n_s < n_g \ (n_c < n_g)$ as $T \to 0$, similar to the results on samples with long-range interactions. The data suggest that interacting droplet models, rather than hierarchical pictures of glassy dynamics, might be more appropriate.

¹Supported by NSF DMR-0905843, NHMFL via NSF DMR-0654118, and the State of Florida.

Ping V. Lin Natl. High Magnetic Field Lab., Florida State Univ.

Date submitted: 09 Nov 2012

Electronic form version 1.4