Abstract Submitted for the MAR13 Meeting of The American Physical Society

Quantum Monte Carlo simulation of the power-law correlated SU(6) quantum magnets with ¹³²Yb fermions DA WANG, Department of Physics, University of California, San Diego, CA92093, ZI CAI, Department of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany, CONGJUN WU, Department of Physics, University of California, San Diego, CA92093 — We systematically investigate the half-filled SU(2N) Hubbard model on the two dimensional square lattice, using the projector quantum Monte-Carlo method which is free of sign problem. We find that the ground state changes from the long-range Neel order in the SU(2) case to a paramagnetic state in the large N limit, in which no long-range order was observed. Employing Maximum entropy method to analytically continue imaginary-time data, we obtain both one-particle and two-particle spectral functions in the whole Brillouin zone. As N increases, the charge gap is quickly suppressed and the spin-wave feature with linear dispersion around (π,π) is finally destroyed. The related physics is discussed as well as some applications to the experiments.

Da Wang Department of Physics, University of California, San Diego

Date submitted: 11 Dec 2012

Electronic form version 1.4