How to predict polydisperse hard-sphere mixture behavior using maximally equivalent tridisperse systems1 VITALIY OGARKO, STEFAN LUDING, University of Twente — Polydisperse hard sphere mixtures have equilibrium properties which essentially depend on the number density and a reduced number K of moments of the size distribution function. Such systems are equivalent to other systems with different size distributions if the K moments are matched. In particular, a small number s of components, such that $2s - 1 = K$ is sufficient to mimic systems with continuous size distributions. For most of the fluid phase $K = 3$ moments ($s = 2$ components) are enough to define an equivalent system, while in the glassy states one needs $K = 5$ moments ($s = 3$ components) to achieve good agreement between the polydisperse and its maximally-equivalent tridisperse system. With $K = 5$ matched moments they are also close in number- and volume-fractions of rattlers. Finally, also the jamming density of maximally-equivalent jammed packings is very close, where the tiny differences can be explained by the distribution of rattlers.

1This research is supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs, project Nr. STW-MUST 10120.