Abstract Submitted for the MAR13 Meeting of The American Physical Society

Enhanced Luminescence in Tb/Ce co-doped Zinc- and Tin-Oxide quantum dots CHRISTIE LAROCHELLE, JINGJING XU, Franklin & Marshall College, KELLY MCCUTCHEON, Virginia Tech — SnO₂ and ZnO quantum dots doped with Tb³⁺ exhibit strong luminescence from the Tb³⁺ dopants due to efficient energy transfer from the semiconductor donors to the Tb³⁺ acceptor ions. We report results from a study of the effect of co-doping the SnO₂ and ZnO dots with both Tb³⁺ and Ce³⁺ on the photoluminescence properties of the samples. The dots were synthesized using a sol-gel technique and the Ce³⁺/Tb³⁺ ratio was varied while keeping the total doping level at 1wt%. X-ray diffraction and TEM results confirm the presence of nanocrystals of less than 10 nm in diameter. Photoluminescence results indicate that the Tb³⁺ ions are incorporated in a crystalline environment and that co-doping with Ce³⁺ enhances the energy transfer efficiency and therefore the intensity of the Tb³⁺ luminescence. The effect of heat treatment on the size of the dots and the impact of size on luminescence properties was also investigated.

> Christie Larochelle Franklin & Marshall College

Date submitted: 17 Nov 2012

Electronic form version 1.4