Effect of Carbon Nanotubes on Thermal Behavior of Poly(L-lactide) and Poly(D-lactide) Electrospun Fibers

YAZHE ZHU, MAO BIN, PEGGY CEBE, Tufts University — Thermal properties and crystallization behavior of electrospun polymer composites fibers of poly (L-lactide) (PLLA) and poly (D-lactide) (PDLA) blended with a small amount of carbon nanotubes (0.1-4 wt%) were systemically studied by differential scanning calorimetry, wide- and small- angle X-ray scattering, and time-resolved Fourier transform infrared spectroscopy. The disordered $\alpha'$-form crystal and the more stable $\alpha$-form crystal in polymer composites are produced respectively at low and high crystallization temperatures ($T_c$). It was found that the $\alpha'$- to $\alpha$-crystalline phase transition occurs prior to the dominant melting in both polymer composites PLLA and PDLA crystallized at low $T_c$. We compare the effect of carbon nanotubes on this transition for neat and filled samples. Moreover on increasing the content of CNTs from 0.1 to 4 wt%, the induction period for crystallization was shortened and the polymer composites’ crystallization rate was enhanced. The $\alpha'$- to $\alpha$-crystalline phase transition of PLLA and PDLA was better accelerated at low $T_c$ from 80° to 120°. With increasing $T_c$, CNTs have smaller influence on the transition.

$^1$The authors kindly acknowledge National Science Foundation for financial support through DMR-1206010 and MRI Program under DMR-0520655 for thermal analysis instrumentation. X-ray related work was conducted at the Brookhaven National Laboratory.

Yazhe Zhu
Tufts University

Date submitted: 17 Nov 2012

Electronic form version 1.4