Abstract Submitted for the MAR13 Meeting of The American Physical Society

Magnetic anisotropy of strained MnGa alloys RENAT SABIRI-ANOV, NABIL AL-AQTASH, University of Nebraska at Omaha — MnGa is a promising candidate for Rare Earth free permanent magnet applications because it has a large magnetocrystalline anisotropy. We examine the variation of the magnetocrystalline anisotropy of these alloys as function of bi-axial in-plane strain using abinitio electronic structure calculations. We employed force theorem to calculate the $MAE=E(||)-E(\perp)$ as difference of energies of the system with magnetization along and perpendicular to the easy axis. Using projector augmented wave method implemented in VASP we have calculated MAE in MnGa, Mn₃Ga and Mn_{1+x}Ga_{1-x} alloys. We find that the MAE is 2.5MJ/m³ (0.42meV/u.c.) and 0.12MJ/m³ (0.07meV/u.c.) in unstrained MnGa and Mn₃Ga, respectively. MAE decreases if bi-axial strain is applied in MnGa. Thus, the anisotropy of this system can be affected by the strain. We also discuss the effect of Mn disorder on MAE in Mn_{1+x}Ga_{1-x} alloys.

> Renat Sabirianov University of Nebraska at Omaha

Date submitted: 17 Nov 2012

Electronic form version 1.4