The Incorporation of C in the Crystal Lattice of Metals; Its Role on the Structure and Properties of these New Materials Called Covetics

LOURDES SALAMANCA-RIBA, ROMAINE ISAACS, University of Maryland, DAVID FORREST, AZZAM MANSOUR, NSWC, ANDREW HERZING, NIST, MELBURNE LEMIEUX, Stanford University, JASON SHUGART, Third Millennium Metals, LLC — Nanocarbon has been successfully incorporated in molten metals and metal alloys using a new method of manufacturing in which the molten metal (or metal alloy) acts as ionizing medium causing nanocarbon structures to form in-situ. C in concentrations up to \(\sim 10\% \) weight was incorporated in Ag, Al and Cu. The bonding between the carbon and the metal is very strong and persists after re-melting and resolidification. These materials, called “covetics,” show improved properties over those of the host metal. For example, the thermal conductivity of Cu covetic is higher than pure Cu. The electrical conductivity of Al covetic is higher than for pure Al. The yield strength of Al and Cu covetics is higher than the pure metals. We have used X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy to investigate the incorporation of C in the metal. Scanning and transmission electron microscopy (TEM) were also employed along with energy dispersive X-ray spectroscopy and electron energy loss spectroscopy (EELS). The nanocarbons in the covetics are in the form of, graphene nanoribbons, and amorphous nanocarbon, and all are bonded to the metal. The C-K edge in the EELS, and the Raman spectra from these samples show signals characteristic of graphitic sp2 bonding.

\(^1\)Supported in part by NSF MRSEC DMR 0520471 and ONR Code 332 # N0001410WX20992.

Lourdes Salamanca-Riba
University of Maryland

Date submitted: 17 Nov 2012

Electronic form version 1.4