Abstract Submitted for the MAR13 Meeting of The American Physical Society

Investigation of E_{2g}^1 and A_{1g} Raman Modes of Few-Layer MoS₂ on HfO₂ Substrate HUI-CHUN CHIEN, JATINDER KUMAR, HSIN-YING CHIU, University of Kansas — The recent research work by Radisavljevic *et al.*[1] shows that the mobilities of monolayer MoS₂ transistors can be improved by employing a thin layer of hafnium oxide as top-gate dielectric. Dielectric screening has been successfully demonstrated to suppress the Coulomb interactions of charged impurities on the substrate. Therefore, we develop an alternative method of building monolayer MoS₂ transistors on HfO₂ substrate. Owing to the low contrast of few-layer MoS₂ flakes on thin HfO₂ layer, which makes the realization of such device configuration difficult. By utilizing the thickness dependence of in-plane and out-of-plane Raman peaks of MoS₂ flakes, E_{2g}^1 and A_{1g} , respectively, we establish an efficient approach to improve the identification of MoS₂ layers by Raman spectrum instead of AFM. Our investigation of Raman spectrum of few-layer MoS₂ on HfO₂ shows the significant difference from those on SiO₂. The substrate dependence of Raman spectrum as well as its further application will be discussed in this talk.

[1] Radisavljevic, et al., Nat. Nanotech. 6, 147 (2011)

Hui-Chun Chien University of Kansas

Date submitted: 17 Nov 2012

Electronic form version 1.4