Abstract Submitted for the MAR13 Meeting of The American Physical Society

Enhancement of lower critical field in thin MgB_2 films and MgB_2/MgO multilayers TENG TAN, EVAN JOHNSON, NARENDRA ACHARYA, MICHAEL HAMBE, KE CHEN, Department of Physics, Temple University, ALEX KRICK, STEVEN MAY, Department of Materials Science and Engineering, Drexel University, XIAOXING XI, Department of Physics, Temple University — Magnesium diboride is a conventional superconductor with a high T_c of 39 K, a low residual resistivity of $< 0.1 \ \mu\Omega cm$ (at 42 K), and higher thermodynamic critical field H_c values than Nb. These properties make MgB₂ a promising superconductor as an alternative to Nb for future SRF cavities. However, the lower critical field H_{c1} of MgB₂ is low, and vortex dissipation above H_{c1} can lead to degradation of the quality factor and low RF breakdown field. Here, we report an enhancement of H_{c1} in thin MgB₂ films and MgB₂/MgO multilayers. The value of $H_{c1}(5K)$ is increased from 40 mT in a 300 nm-thick MgB_2 film to 180 mT when the MgB_2 layer thickness is 100 nm either in a single-layer film or in a MgB_2/MgO multilayer with a total MgB_2 layer thickness of 300 nm. Superconducting MgB_2 thin films have been coated *in-situ* on the inner wall of a SRF cavity using the hybrid physical chemical vapor deposition (HPCVD) technique. The characterization of the coating will be presented.

> Teng Tan Department of Physics, Temple University

Date submitted: 18 Nov 2012

Electronic form version 1.4