Crossover from Polaronic to Magnetically Phase-Separated Behavior in La$_{1-x}$Sr$_x$CoO$_3$

D. Phelan, CEMS, University of Minnesota (UMN), S. El Khatib, Physics, AUS, S. Wang, CEMS, UMN, J. Barker, NCNR, NIST, J. Zhao, H. Zheng, J.F. Mitchell, MSD, ANL, C. Leighton, CEMS, UMN

Dilute hole-doping in La$_{1-x}$Sr$_x$CoO$_3$ leads to the formation of “spin-state polarons” where a non-zero spin-state is stabilized on the nearest Co$^{3+}$ ions surrounding a hole [1]. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around $x = 0.03$ with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.

D. Phelan
CEMS, UMN

Date submitted: 11 Dec 2012
Electronic form version 1.4