High Field Knight Shift studies in CeIrIn51 ABIGAIL SHOCKLEY, NICHOLAS APROBERTS-WARREN, DAVID NISSON, University of California, Davis, PHIL KUHNS, ARNEIL REYES, National High Magnetic Field Lab, PETER KLVINS, NICHOLAS CURRO, University of California, Davis — All heavy fermion compounds that have been measured with NMR exhibit a Knight shift anomaly, in which the Knight shift does not scale with the bulk susceptibility below a characteristic temperature, T*. Typically this temperature corresponds with the Kondo lattice coherence temperature as measured by other probes. In order to investigate the microscopic origin of this anomaly, we have conducted high field measurements of the In-115 Knight shift in CeIrIn5 up to 30 T. We find that although the onset temperature T* is field independent, the overall low temperature shift below T* is suppressed. In the context of the two-fluid model, these results suggest that the dominant change is in the local moment channel.

1National High Magnetic Field Lab

Abigail Shockley
University of California, Davis

Date submitted: 09 Nov 2012

Electronic form version 1.4