Fluctuation of Valley Density Wave in Iron Pnictides1 JIAN KANG, ZLATKO TESANOVIC2, Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 — We studied the fluctuations within the $U(n)^*U(n)$ [1] theory, which was developed to explain the magnetic and structural transitions in the parent compound of iron pnictides. The self-energy of the fermion contains singularity in low energy scale. It behaves similar to marginal Fermi liquid theory and depends on n. The optical conductivity and spin lattice relaxation time are calculated and compared with some experiment on “pseudogap” in iron pnictides. More experiments are proposed to provide a direct view our $U(4)^*U(4)$ theory being assembled as one moves from low to high energies.

1This work was supported in part by the Johns Hopkins-Princeton Institute for Quantum Matter, under Award No. DE-FG02-08ER46544 by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

2deceased