Abstract Submitted for the MAR13 Meeting of The American Physical Society

Samarium Hexaboride - First True 3D Topological Insulator¹ STEVEN WOLGAST, CAGLIYAN KURDAK, KAI SUN, JAMES ALLEN, Dept. of Physics, University of Michigan, ZACHARY FISK, Dept. of Physics and Astronomy, University of California, Irvine — Although many important breakthroughs in the study of topological states of matter have been achieved within the last few years, a very important link still remains missing-the experimental discovery of a true 3D topological insulator. Materials currently known to have topological surface states (e.g. $Bi_{1-x}Sb_x$, Bi_2Se_3 and Bi_2Te_3) are also bulk conductors, and thus do not have a well-defined topological index. Recent calculations of the heavy-fermion Kondo insulator Samarium Hexaboride (SmB_6) have predicted the possibility of ingap topological surface states in this material. Meanwhile, the conjectured existence of a topologically-protected surface state in SmB_6 could resolve many of the longstanding puzzles surrounding its low-temperature transport properties. Here we study the transport properties of SmB_6 with a novel configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that SmB_6 is a true topological insulator with an insulating bulk and a metallic surface. This discovery resolves the standing puzzles about the strange transport behavior of this material, and it provides the first material in which transport properties of a 3D topological state can be studied.

¹Funded by NSF #DMR-1006500. Performed in part in the Electron Microbeam Analysis Laboratory under NSF #DMR-0320740, and in the Lurie Nanofabrication Facility, a member of NNIN, supported by NSF. We thank Richard Field III for photography services.

Steven Wolgast Dept. of Physics, University of Michigan

Date submitted: 09 Nov 2012

Electronic form version 1.4