Abstract Submitted
for the MAR13 Meeting of
The American Physical Society

Surface Ferromagnetism and Superconducting Properties of Nanocrystalline Niobium Nitride SHIPRA RAI, NITESH KUMAR, A. SUNDARESAN, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore — We report magnetic, transport (electrical) and thermal (heat capacity) properties of nanocrystalline δ-NbNx prepared by urea-nitridation method and heated at three different temperatures, 700, 800 and 900 °C respectively. Particle size and their agglomeration increases with increasing synthesis temperature. The sample prepared at 900 °C, showed the highest transition temperature, Tc(onset) = 16 K with a transition width (∆Tc) of 1.8 K, as obtained from resistivity measurement on the cold-pressed bar. Above Tc, magnetization measurements revealed the presence surface ferromagnetism that coexists with superconductivity below Tc. Heat capacity measurements confirm the bulk nature of superconductivity with strong electron-phonon coupling. These results are compared with those of the samples prepared at 800 °C with a lower Tc (10K) and 700 °C, which is non-superconducting down to the lowest temperature measured.

Shipra Rai
Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore

Date submitted: 18 Nov 2012
Electronic form version 1.4