Ab-Initio Study of Defect Physics for Layered LaCuChO and BaCuChF (Ch={S,Se,Te}) Structures

JASON VIELMA, DAVID H. FOSTER, GUENTER SCHNEIDER, Oregon State University — Layered oxycalco-
genides LnCuChO (Ln = {La,Pr,Nd}, Ch = {S,Se,Te}) and isostructural layered flu-
orochalcogenides BaCuChF have drawn much interest in recent years as p-type wide
bandgap semiconductors with applications in transparent electronics and photo-
voltaics. Previous experimental and computational studies concluded for both LaCu-
ChO, with a bandgaps between 2.4-3.1 eV, and BaCuChF, with optical bandgaps
between 2.8-3.5 eV, that p-type conductivity is primarily due to copper vacancies.
We report a comparative ab-initio computational study of the defect physics for both
families of materials. Point defects and defect complexes are taken into account and
previously omitted corrections have been included.1,2 Accurate chemical potential
stability diagrams and formation energies are calculated using the GGA+U method
and fitted elemental-phase reference energies.3

2H. Hiramatsu, T. Kamiya, T. Tohei, E. Ikenaga, T. Mizoguchi, Y. Ikuhara, K.

Guenter Schneider
Oregon State University

Date submitted: 17 Dec 2012

Electronic form version 1.4