The origin of the high hole density in In$_x$Ga$_{1-x}$N:Mg. WILLIAM WILLOUGHBY, MARY ELLEN ZVANUT, University of Alabama at Birmingham — InGaN is the nitride of choice for applications requiring high hole density and emission tunability. The increased hole density with In incorporation may be explained by several different mechanisms; however, our electron paramagnetic resonance (EPR) studies reveal a surprising feature: the number of Mg-related acceptors decreases with increasing hole density. In$_x$Ga$_{1-x}$N films, with x between 0.02 and 0.11 and thickness between 0.25 and 0.44 μm, were grown p-type by doping with Mg to a concentration of $2-3 \times 10^{19}$ cm$^{-3}$. Hall measurements reveal the expected hole density increase from 5-30\times1017 cm$^{-3}$ with increasing In mole fraction. However, unlike GaN:Mg where the EPR Mg signal tracks the hole density, the EPR intensity of the Mg-related signal in InGaN is found to decrease as the hole density increases. Together, compensating defects and a lowering of the acceptor level may explain the decrease in EPR intensity and the increase in hole density observed as the In mole fraction is increased.

1Dr. D. Koleske grew the samples and performed the Hall measurements. The work is supported by the National Science Foundation, DMR-1006163.