Electron diffraction studies on CVD grown bi-layered graphene

KIRAN LINGAM, MEHMET KARAKAYA, RAMAKRISHNA PODILA, Dept. of Physics and Astronomy, Clemson University, Clemson, SC USA 29634, HAIJUN QUIN, Advanced Materials Research Laboratories, Clemson University, Anderson, SC USA 29625, APPARAO M. RAO, Dept. of Physics and Astronomy, Clemson University, Clemson, SC USA 29634, DEPT. OF PHYSICS AND ASTRONOMY, CLEMSON UNIVERSITY, CLEMSON, SC USA 29634. TEAM, ADVANCED MATERIALS RESEARCH LABORATORIES, CLEMSON UNIVERSITY, ANDERSON, SC USA 29625 COLLABORATION — Graphene has generated enormous interest in the scientific community due to its peculiar properties like electron mobility, thermal conductivity etc. Several recent reports on exfoliated graphene emphasized the role of layer stacking on the electronic and optical properties of graphene in case of bi-layered and few layered graphene and several synthesis techniques like chemical vapor deposition (CVD) on Copper foils are employed to prepare graphene for applications at a large scale. However, a correlated study pertinent to the stacking order in CVD grown graphene is still unclear. In this work, using a combination of Raman spectroscopy and selected area electron diffraction analysis we analyzed the preferred misorientation angles in a CVD grown bi-layered graphene and also the role of Cu crystal facets on the graphene stacking order will be presented.