Effect of sample preparation on charged impurities in graphene substrates1 K.M. BURSON, Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742-4111, USA, C.R. DEAN, Columbia University, New York, New York, 10027, USA, K. WATANABE, T. TANIGUCHI, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, J. HONE, P. KIM, Columbia University, New York, New York, 10027, USA, W.G. CULLEN, M.S. FUHRER, Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742-4111, USA — The mobility of graphene as fabricated on SiO\textsubscript{2} has been found to vary widely depending on sample preparation conditions. Additionally, graphene mobility on SiO\textsubscript{2} appears to be limited to \(\sim 20,000 \text{ cm}^2/\text{Vs}\), likely due to charged impurities in the substrate. Here we present a study of the effect of fabrication procedures on substrate charged impurity density \((n_{\text{imp}})\) utilizing ultrahigh-vacuum Kelvin probe force microscopy. We conclude that even minimal SEM exposure, as from e-beam lithography, induces an increased impurity density, while heating reduces the number of charges for sample substrates which already exhibit a higher impurity density. We measure both SiO\textsubscript{2} and h-BN and find that all \(n_{\text{imp}}\) values observed for SiO\textsubscript{2} are higher than those observed for h-BN; this is consistent with the observed improvement in mobility for graphene devices fabricated on h-BN over those fabricated on SiO\textsubscript{2} substrates.

1This work was supported by the US ONR MURI program, and the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471.

Kristen M. Burson
Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742-4111, USA