Abstract Submitted for the MAR13 Meeting of The American Physical Society

In situ isotopic enrichment and growth of ²⁸Si for quantum information KEVIN DWYER, Materials Science and Engineering, University of Maryland, JOSHUA POMEROY, NIST — Starting from natural abundance silane gas, we deposit 28 Si films enriched *in situ* to 99.9% in support of solid state quantum information systems. Isotopically enriched materials such as ²⁸Si are known to act as a "solid state vacuum" allowing for qubits with coherence (T_2) times of minutes. Quantum coherent devices rely on long T_2 times, but nuclear spin impurities are a major cause of decoherence. Isotopically enriching materials to eliminate stray nuclear spins (such as the 4.7% ²⁹Si in natural silicon) greatly improves coherence. Our objective is to produce silicon that is not only isotopically enriched, but chemically pure and defect free. We crack and ionize a natural abundance source gas, magnetically mass filter the ions in a beam line, and deposit the enriched material hyperthermal energies. In addition to our first ²⁸Si samples assessed by SIMS to be enriched to > 99.9%, we previously implanted ²²Ne enriched at 99.4% (9.2% natural abundance) as proof of principle and have also grown ^{12}C films enriched at > 99.996% (98.9% natural abundance). To our knowledge, no other effort is actively producing enriched solid silicon directly from natural abundance silane. Ongoing improvements are leading us towards our goal of 28 Si enriched to > 99.99% and epitaxial deposition.

> Kevin Dwyer Materials Science and Engineering, University of Maryland

Date submitted: 19 Nov 2012

Electronic form version 1.4