Redox potential of liquid water: A first-principles theory
MICHAEL LUCKING, YIYANG SUN, DAMIEN WEST, SHENGBAI ZHANG,
Rensselaer Polytechnic Institute — A first-principles molecular dynamic method is
proposed to calculate the absolute redox potentials of liquid water. The key of the
method is the evaluation of the difference between the vacuum level and the average
electrostatic potential inside liquid water, which employs an average over both time
and space. By avoiding the explicit use of the Kohn-Sham level, such as the position
of the valence band maximum, as the reference energy for the excited electrons, we
are able to calculate water redox potentials accurately. The results using the PBE
functional are in good agreement with experiment. We attribute the success of the
method to the accurate charge density given by density functional calculation under
the local or semi-local approximations. This establishes the validity to apply these
effective and efficient approximations to study both the energetics and dynamics of
the redox processes at more complex systems such as solid/solution interfaces.

Michael Lucking
Rensselaer Polytechnic Institute

Date submitted: 19 Nov 2012
Electronic form version 1.4