Abstract Submitted for the MAR13 Meeting of The American Physical Society

Phonon Softening and Bandgap Engineering in Strained Monolayer MoS_2^{1} HIRAM CONLEY, KIRILL BOLOTIN, Department of Physics and Astronomy, Vanderbilt University — By straining monolayer MoS_2 with a 4 point bending apparatus, both phonon softening and a shrinking band gap were observed. Raman spectrum demonstrates phonon softening for both bi and single layer MoS_2 flakes, with a breaking of the E_{2g}^1 degeneracy at large strain. Photoluminescence data shows that the band gap of single layer MoS_2 decreases by 50 meV per % strain. The direct band gap of bilayer MoS_2 decreases by the same rate as for monolayer MoS_2 while the indirect band gap of bilayer MoS_2 decrease by 120 meV % strain. This work clearly demonstrates that MoS_2 's band gap and phonons are tunable by strain engineering suggesting a possibility of devices with mechanically tunable optical and electrical properties.

¹NSF CAREER grant DMR-1056859

Hiram Conley Vanderbilt University

Date submitted: 09 Nov 2012

Electronic form version 1.4