Abstract Submitted for the MAR13 Meeting of The American Physical Society

Resistive Losses in Single-Crystal Ba_{0.6}**K**_{0.4}**Fe**₂**As**₂ BRENDAN BE-NAPFL, University of Notre Dame, CHENGLIN ZHANG, PENGCHENG DAI, University of Tennessee, Knoxville, H.A. BLACKSTEAD, University of Notre Dame — Temperature- and field-dependent surface resistance measurements were conducted using Electron Spin Resonance (ESR) techniques on single-crystal Ba_{0.6}K_{0.4}Fe₂As₂ samples (rf frequency = 20.3 GHz). At a fixed temperature, field scans were performed at various angles of H_0 with respect to H_{rf} . To our knowledge, this is the first report of such studies on this material. For temperatures exceeding T_C , there was no evidence of iron ESR. In the superconducting state, the samples exhibit dissipative losses which increase monotonically as a function of applied field for fixed temperature. The level of field-dependent dissipation increases as T approaches T_C from below, and vanishes at the transition.

> Brendan Benapfl University of Notre Dame

Date submitted: 19 Nov 2012

Electronic form version 1.4