Resistive Losses in Single-Crystal $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ BRENDAN BENAPFL, University of Notre Dame, CHENGLIN ZHANG, PENGCHENG DAI, University of Tennessee, Knoxville, H.A. BLACKSTEAD, University of Notre Dame — Temperature- and field-dependent surface resistance measurements were conducted using Electron Spin Resonance (ESR) techniques on single-crystal $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ samples (rf frequency = 20.3 GHz). At a fixed temperature, field scans were performed at various angles of H_0 with respect to H_{rf}. To our knowledge, this is the first report of such studies on this material. For temperatures exceeding T_C, there was no evidence of iron ESR. In the superconducting state, the samples exhibit dissipative losses which increase monotonically as a function of applied field for fixed temperature. The level of field-dependent dissipation increases as T approaches T_C from below, and vanishes at the transition.

Brendan Benapfl
University of Notre Dame

Date submitted: 19 Nov 2012