Magnetism dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering

STEVEN HAHN, GREGORY TUCKER, The Ames Laboratory and Iowa State University, JIAQIANG YAN, Oak Ridge National Laboratory and The University of Tennessee, AYMAN SAID, BOGDAN LEU, Advanced Photon Source, Argonne National Laboratory, R.W. MCCALLUM, The Ames Laboratory, ERCAN ALP, Advanced Photon Source, Argonne National Laboratory, THOMAS LOGRASSO, ROBERT MCQUEENEY, BRUCE HARMON, The Ames Laboratory and Iowa State University — The phonon dispersion was measured at room temperature (above \(T_N \)) along \((0,0,L)\) in the tetragonal phase of LaFeAsO using inelastic x-ray scattering. Magnetostructural effects are well documented in the AFe\(_2\)As\(_2\)-based \((A=\text{Ca, Sr, Ba, Eu})\) systems. Only recently have single crystals of RFeAsO \((R=\text{La, Ce, Pr, Nd, Sm, Gd})\)-based compounds become available. The experimentally observed splitting between two \(A_{1g} \) phonon modes at 22 and 26 meV is only produced in spin-polarized first-principles calculations imposing various types of antiferromagnetic order. Magnetostructural effects similar to those observed in the AFe\(_2\)As\(_2\) materials are confirmed present in LaFeAsO. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist above \(T_N \) and into the tetragonal phase.

\(^1\)Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.