Abstract Submitted for the MAR13 Meeting of The American Physical Society

Exponential supercell convergence of the exact exchange energy via truncated coulomb potentials¹ RAVISHANKAR SUNDARARAMAN, T. A. ARIAS, Department of Physics, Cornell University, Ithaca, NY — Hybrid density functionals have become increasingly popular as a solution to mitigate the selfinteraction error in semi-local density functionals, but widespread application to periodic systems has been limited by computational cost. This cost is exacerbated by poor k-point convergence due to the $G \rightarrow 0$ singularity in the exact exchange energy, in spite of several singularity correction methods such as auxilliary function integration,^{2,3} image subtraction,⁴ and spherical truncation of the coulomb potential.⁵ We analyze these rather disparate methods in an intuitive formalism based on Wannier function localization, which naturally suggests the truncation of the Coulomb potential on the superlattice Wigner-Seitz cell. We demonstrate that this scheme systematically exhibits the best k-point convergence, comparable to that of semi-local functionals, even for low-symmetry and reduced-periodicity systems where previous methods fail.

¹This work was supported as a part of the Energy Materials Center at Cornell (EMC²), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001086.

²P. Carrier, S. Rohra and A. Görling, *Phys. Rev. B* **75**, 205126 (2007)

³I. Duchemin and F. Gygi, Comp. Phys. Comm **181**, 855 (2010)

⁴J. Paier et al., J. Chem. Phys. **122**, 234102 (2005)

⁵J. Spencer and A. Alavi, *Phys. Rev. B* **77**, 193110 (2008)

Ravishankar Sundararaman Department of Physics, Cornell University, Ithaca, NY

Date submitted: 09 Nov 2012

Electronic form version 1.4