Exponential supercell convergence of the exact exchange energy via truncated coulomb potentials1 RAVISHANKAR SUNDARARAMAN, T. A. ARIAS, Department of Physics, Cornell University, Ithaca, NY — Hybrid density functionals have become increasingly popular as a solution to mitigate the self-interaction error in semi-local density functionals, but widespread application to periodic systems has been limited by computational cost. This cost is exacerbated by poor \(k \)-point convergence due to the \(G \rightarrow 0 \) singularity in the exact exchange energy, in spite of several singularity correction methods such as auxiliary function integration,2,3 image subtraction,4 and spherical truncation of the coulomb potential.5 We analyze these rather disparate methods in an intuitive formalism based on Wannier function localization, which naturally suggests the truncation of the Coulomb potential on the superlattice Wigner-Seitz cell. We demonstrate that this scheme systematically exhibits the best \(k \)-point convergence, comparable to that of semi-local functionals, even for low-symmetry and reduced-periodicity systems where previous methods fail.

1This work was supported as a part of the Energy Materials Center at Cornell (EMC2), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001086.

Ravishankar Sundararaman
Department of Physics, Cornell University, Ithaca, NY

Date submitted: 09 Nov 2012