Abstract Submitted for the MAR13 Meeting of The American Physical Society

Critical magnetic scattering in geometric frastrated multiferroic LuMnO₃ SHINICHIRO YANO, BING LI, DESPINA LOUCA, Univ. of Virginia, YIMING QIU, JOHN COPLEY, NIST Center for Neutron Research — The coexistence of competing order parameters in the class of materials referred to as the multiferroics is of great interest. The hexagonal manganites $AMnO_3$ (A = Y, Lu, Ho and Yb) with the $P6_3 cm$ space group exhibit a ferroelectric transition, at very high temperatures, typically ~ 1000 K, while the antiferromagnetic transition, T_N , occurs at ~ 100 K. Earlier studies on YMnO₃ and LuMnO₃ using neutron scattering on single crystals showed that diffuse scattering is present around the forbidden nuclear (100) Bragg peak which corresponds to Q=1.20 Å⁻¹. Its intensity rises very sharply and drops just around T_N . We performed inelastic neutron scattering measurement on a powder sample of $LuMnO_3$ form 4 to 250 K using the DCS at NIST. Strong inelastic intensity, not due to magnon excitations, is observed at Q=1.32and 2.50 Å⁻¹. With cooling, the intensity gradually rises and reaches a peak around 100 K. Below, it drops drastically once the system orders. This kind of scattering is due to critical scattering arising from magnetic fluctuations above T_N . The $S(Q, \omega)$ is asymmetric suggesting that the Mn spin correlations are mosmost likely 2-dimensional in nature.

> Shinichiro Yano Univ. of Virginia

Date submitted: 28 Nov 2012

Electronic form version 1.4