Synthesis of Epitaxially Strained Brownmillerite Strontium Cobaltate (SrCoO$_{2.5}$) ERIC JIN, MATTHEW MARSHALL, JOSEPH NGAI, CHARLES AHN, FRED WALKER, Yale University — Strontium cobaltate (SrCoO$_3$) is a perovskite oxide predicted to have metal-insulator transitions and magnetic phases induced by epitaxial strain. The related brownmillerite phase SrCoO$_{2.5}$ has a similar structure, but contains alternating planes of oxygen vacancies in the octahedral oxygen cages of the perovskite structure. We demonstrate epitaxial growth of SrCoO$_{2.5}$ on both SrTiO$_3$ and LaAlO$_3$ substrates by molecular beam epitaxy using RF oxygen plasma. X-ray diffraction measurements show finite thickness oscillations that are characteristic of smooth films, and half-order diffraction peaks that are representative of the brownmillerite phase. We observe a single tetragonal domain when the film is deposited on SrTiO$_3$ with the planes of oxygen vacancies parallel to the interface. When grown on LaAlO$_3$, the film contains multiple orthorhombic domains. We conclude that the observed domain structures for SrCoO$_3$ grown on SrTiO$_3$ and LaAlO$_3$ are due to ordering of the oxygen vacancies to reduce strain. We will also present strategies to increase the oxygen content to that of SrCoO$_3$.

Eric Jin
Yale University

Date submitted: 20 Nov 2012