Abstract Submitted for the MAR13 Meeting of The American Physical Society

High photoactivity in ultrathin as-grown hematite films prepared by atomic layer deposition¹ JEFFREY KLUG, NICHOLAS BECKER, SHANNON RIHA, ALEX MARTINSON, JEFFREY ELAM, MICHAEL PELLIN, THOMAS PROSLIER, Argonne National Laboratory — Nanostructured hematite $(\alpha$ -Fe₂O₃) has been widely studied for use in a variety of thin film applications including solar energy conversion, water oxidation, catalysis, and gas sensing. Among established deposition methods, atomic layer deposition (ALD) is a leading technique for large-scale, controlled synthesis of a wide range of nanostructured materials. In this work, ALD of Fe₂O₃ is demonstrated using FeCl₃ and H₂O precursors at growth temperatures between $200 - 350^{\circ}$ C. Self-limiting growth of Fe₂O₃ is observed with a growth rate of ~ 0.06 nm/cycle. As-deposited, films are nanocrystalline with low Cl impurities and a mixture of α - and γ -Fe₂O₃. Post-deposition annealing in O₂ leads to phase-pure hematite with increased out-of-plane grain size. Photoelectrochemical measurements under simulated solar illumination reveal high photoactivity toward water oxidation in both as-deposited and post-annealed films. Planar films deposited at low temperature (235°C) exhibit remarkably high photocurrent densities $\sim 0.71 \text{ mA/cm}^2$ at 1.53 V vs. the reversible hydrogen electrode (RHE) without further processing. Films annealed in air at 500°C show current densities of up to 0.84 mA/cm^2 (1.53V vs. RHE).

¹This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357 and by the American Recovery and Reinvestment Act (ARRA) through the US Department of Energy, Office of High Energy Physics.

Jeffrey Klug Argonne National Laboratory

Date submitted: 29 Nov 2012

Electronic form version 1.4