Strain-dependent Metal-Insulator Transition in VO$_2$ single-crystalline thin films

NAGA PHANI AETUKURI, Stanford University/IBM Almaden Research Center, ALEXANDER GRAY, SLAC National Accelerator Laboratory, MATTEO COSSALE, MARC DROUARD, LI GAO, IBM Almaden Research Center, HERMANN DURR, SLAC National Accelerator Laboratory, MAHESH SAMANT, STUART PARKIN, IBM Almaden Research Center — Vanadium dioxide (VO$_2$) has a near room temperature metal insulator transition (T$_{MIT} \sim 340$ K) accompanied by a structural transition making the origin of this transition controversial. In this work, we have continuously changed T$_{MIT}$ by as much as 60 K in VO$_2$ (001) single crystalline thin films by using RuO$_2$ buffer layers. We observe a decrease in the T$_{MIT}$ as a function of decreasing c-axis length in the rutile phase which is unexpected from a one-dimensional Peierls model. By performing complementary bulk-sensitive spectroscopic measurements, namely, x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS), we identify changes in orbital occupation and electron-electron correlations as a function of strain in the metallic state that explain the observed T$_{MIT}$ dependence on strain.

Naga Phani Aetukuri
Stanford University/IBM Almaden Research Center

Date submitted: 20 Nov 2012

Electronic form version 1.4