Abstract Submitted for the MAR13 Meeting of The American Physical Society

Enrichment and growth of enriched ²⁸Si films JOSHUA POMEROY, KEVIN DWYER, National Institute of Standards and Technology — In support of quantum information and spintronics efforts, we are producing enriched ²⁸Si films that are 99.9% ²⁸Si according to secondary ion mass spectrometry assessment. We use an ionization source to crack and ionize natural abundance silane gas, then extract the ions through a magnetic sector analyzer to isolate the major isotope ²⁸Si. We have presently demonstrated > 100 nm thick films of silicon and carbon, which was enriched to 99.996% ¹²C. With ongoing improvements, we expect to produce ²⁸Si enriched to better than 99.99% at thicknesses > 1 μ m grown epitaxially on Si(100) substrates.

Joshua Pomeroy National Institute of Standards and Technology

Date submitted: 20 Nov 2012

Electronic form version 1.4