Temperature Dependence of 7Li NMR Spectra in a Li$_2$KRb(SO$_4$)$_2$ Single Crystal

MOOHEE LEE, HO HYOUN KIM, KIHYEOK KANG, JUNG SEOK SIM, Department of Physics, Konkuk University, Seoul 143-701, South Korea, AE RAN LIM, Department of Science Education, Jeonju University, Jeonju 560-759, South Korea — Li$_2$KRb(SO$_4$)$_2$ is a mixed crystal of LiKSO$_4$ and LiRbSO$_4$. LiKSO$_4$ has a hexagonal symmetry at room temperature and undergoes four phase transitions at low temperature. On the other hand, LiRbSO$_4$ is para-electric with a monoclinic symmetry at room temperature and then shows a phase transition above 400 K. In order to understand the microscopic details of structural phase transitions in the single crystal of Li$_2$KRb(SO$_4$)$_2$, we have measured the temperature dependence of 7Li NMR spectrum at 8 T from 300 K down to 100 K. The 7Li NMR spectrum shows three resonance peaks, which is a typical shape from three nuclear Zeeman level splitting for the nuclear spin of I=3/2 with nuclear-quadrupole interaction. The spectrum shows a different shape for 8T parallel and perpendicular to the c-axis. As temperature decreases, the spectrum shows no significant change whereas the 7Li nuclear quadrupole frequency increases monotonically.