Linear magnetoresistance in non-degenerately doped SrTiO$_3$1

ANAND BHATTACHARYA, Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory — I will present transport measurements on non-degenerately doped n–SrTiO$_3$ single crystals. The samples were doped by annealing at high temperatures in vacuum. The resistance decreases monotonically down to the lowest temperatures, for carrier densities as low as 3.85×10^{15}/cm3. The magnetoresistance (MR) is found to be positive and linear at high fields, with $R(9 \text{T})/R(0 \text{T}) > 28$ at 2 K for the lowest doping levels measured. The magnitude of the MR decreases with increasing temperature, and with increased doping. I will discuss the data in light of various mechanisms for linear magnetoresistance in the context of n–SrTiO$_3$.

1Supported by DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.