MAR13-2012-008228

Abstract for an Invited Paper for the MAR13 Meeting of the American Physical Society

Computational Spectroscopy for Nanoscale Photovoltaics MARCO BERNARDI, Massachusetts Institute of Technology

Nanoscale photovoltaic (PV) systems employ nanomaterial interfaces to dissociate bound excitons formed upon sunlight absorption. This mechanism results in a correlated electron, hole, and exciton interface dynamics whose accurate determination is challenging both theoretically and experimentally. In this talk, I will discuss approaches available to compute and combine relevant spectroscopic quantities to predict efficient nanoscale PV systems. Further, I will present our recent work on two novel families of nanoscale PV devices based on: 1) Nanocarbon materials, achieving 1.3% efficiency, tunable infra-red optical absorption, and superior photostability compared to organic solar cells 2) Two-dimensional monolayer semiconductors such as Graphene-BN and MoS₂, capable of absorbing a significant fraction of sunlight within just \approx 10nm, and showing tunable absorption, band offsets, and power conversion efficiency (PCE).

In closing, I will discuss the errors and necessary accuracy in predicting PCE from first-principles calculations, and propose a suitable figure of merit to quantify absorption solar-matchedness to be used in large-scale searches of nanoscale PV materials.