Optical control of exciton valley polarization in MoS$_2$

KIN FAI MAK, Cornell University

Atomic monolayers of transition metal dichalcogenides have emerged as an interesting class of 2-dimensional (2D) crystals beyond graphene. In particular, the isoelectronic family of MoS$_2$, MoSe$_2$, WS$_2$ and WSe$_2$ monolayers are direct band gap semiconductors.1,2 Unlike graphene, because of the lack of inversion symmetry and the presence of strong spin-orbit interactions, the fundamental energy gaps of these compounds are located at two inequivalent high-symmetry valleys in the Brillouin zone (K and K$'$) with coupled valley and spin degrees of freedom.3 This electronic property makes them unique from conventional semiconductors. In this talk, we will discuss the properties of MoS$_2$ atomic layers as a prototype. Through characterization of the optical properties of the material as a function of thickness, we show that quantum confinement effects lead to a crossover in MoS$_2$ from a bulk indirect gap semiconductor to a direct gap semiconductor at monolayer thickness.4 With this basic property established, we show that complete valley polarization of the excitons in monolayer MoS$_2$ can be achieved by optical pumping with circularly polarized light.5 Furthermore, this polarization can be retained for longer than 1ns. Our results thus highlight the great potential of this material family for studies of valley and spin Hall physics.6

3Ibid.

4Mak, PRL 105, 2010
