Abstract for an Invited Paper for the MAR13 Meeting of the American Physical Society

Magnetic and crystal structures of the honeycomb lattice Na_2IrO_3 and single layer $\text{Sr}_2\text{IrO}_4$1

FENG YE, Oak Ridge National Laboratory

$5d$ based iridates have recently attracted great attention due to the large spin-orbit coupling (SOC). It is now recognized that the SOC that competes with other relevant energies, particularly the on-site Coulomb interaction U, and have driven novel electronic and magnetic phases [1-3]. Combining single crystal neutron and x-ray diffractions, we have investigated the magnetic and crystal structures of the honeycomb lattice Na_2IrO_3 [4]. The system orders magnetically below 18.1 K with Ir^{4+} ions forming zigzag spin chains within the layered honeycomb network with ordered moment of 0.22 μB/Ir site. Such a configuration sharply contrasts the Neel or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the IrO$_6$ octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the $5d$-electron based honeycomb lattice. Neutron diffraction experiments are also performed to investigate the magnetic and crystal structure of the single layer iridate Sr_2IrO_4, where new structural information and spin order are obtained that is not available from previous neutron powder diffraction measurement.

1This work was sponsored in part by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.