MAR13-2012-020398

Abstract for an Invited Paper for the MAR13 Meeting of the American Physical Society

Interlayer Coherence and Transport in Quantum Hall Bilayers and Dirac Materials DMYTRO PESIN, University of Utah

I will discuss two phenomenological descriptions of low-current transport in bilayer quantum Hall system with exciton condensates [1], one based on a Landauer-Buttiker description of Andreev scattering at contacts to coherent bilayers, and one based on a simplified single-parameter p-ology description of the weak to strong interlayer coupling crossover. The Andreev scattering phenomenology is intended to apply when the condensate is well developed and is used to predict current-voltage relationships for a variety of two-contact geometries. I will also apply this formalism to circumstances in which the tunnel current exceeds its critical value and the condensate is time-dependent. The p-ology approach will establish the universal development of large longitudinal drags, even in homogeneous coherent samples, as the condensate weakens and the Hall drag is reduced. Further, I will discuss the interaction-enhanced coherence in layered Dirac systems: two graphene or topological insulator surface-state layers, and the estimates of its strength based on the imaginary-axis gap equations in the random phase approximation [2]. Using a self-consistent treatment of dynamic screening of Coulomb interactions. The gapped phase, I will show that the excitonic gap can reach values on the order of the Fermi energy at strong interactions. The gap will turn out to be a discontinuous function of the interlayer separation and effective fine structure constant, revealing a first-order phase transition between effectively incoherent and interlayer coherent phases.

[1] D. A. Pesin and A. H. MacDonald, Phys. Rev. B 84, 075308 (2011)

[2] Inti Sodemann, D. A. Pesin, and A. H. MacDonald, Phys. Rev. B 85, 195136 (2012)