Abstract Submitted for the MAR13 Meeting of The American Physical Society

THz magneto-electric excitations in the chiral compound Ba3NbFe3Si2O14 SOPHIE DE BRION, LAURA CHAIX¹, FLORENCE LEVY-BERTRAND, VIRGINIE SIMONET, RAFIK BALLOU, BENJAMIN CANALS, PASCAL LEJAY, Institut Néel, CNRS and Université Joseph Fourier, JEAN-BLAISE BRUBACH, GAEL CREFF, FABRICE WILLAERT, PASCALE ROY, Synchrotron SOLEIL, ANDRES CANO, ESRF — The langasite Ba₃NbFe₃Si₂O₁₄ displays a chiral structure and orders magnetically with a Neel temperature $T_N=27$ K. We have determined its terahertz (THz) spectrum by means of synchrotron-radiation measurements. Three different types of excitation are present. The first one, at 13cm⁻¹, disappears at T_N and is assigned to magnons. The others, at 23cm⁻¹ and 29cm⁻¹, persist up to four times T_N . According to their selection rules, they are interpreted as rotational modes of the lattice whose magneto-electric activity reveals a structural transition into a polar helical state.

¹also at ILL

Sophie de Brion Institut Néel, CNRS and Université Joseph Fourier

Date submitted: 29 Nov 2012

Electronic form version 1.4