Kinetics of a Fast Moving Partial Dislocation

NITIN DAPHALAPURKAR, K.T. RAMESH, Johns Hopkins University — Plastic deformation in materials under extreme stresses requires a kinetic description of moving dislocations. The velocities with which the partial dislocations can propagate under an applied stress has implications for plasticity at high strain rates, specifically, the rate of plastic deformation and the rate-sensitivity. In this work, we focus our attention on motion of a twinning partial dislocation in a face-centered cubic (FCC) material, Ni. We use molecular dynamics simulations to simulate the velocity of a propagating twinning partial dislocation and investigate the effect of applied shear stress. Results suggest a limiting value for the speeds of a propagating partial dislocation. The material speeds based on the nonlinear part (under high stresses) of the stress-strain curve are shown to have an influence on the velocity with which a partial dislocation can propagate. Predicted velocities from simulations will be related to observations from high rate impact experiments.

1Supported by Hopkins Extreme Materials Institute
2Membership Pending

Date submitted: 29 Nov 2012

Nitin Daphalapurkar
Johns Hopkins University