Creation of massive entanglement with optimized multiple spin squeezing1 CHAO SHEN, LUMING DUAN, University of Michigan-Ann Arbor — Quantum entanglement is an important resource in many areas such as precision measurement, quantum information processing and quantum computation. Controlled creation of quantum entanglement between a large number of particles is a goal to which significant theoretical and experimental efforts have been devoted. For a large collection of spins, spin squeezing is an experimentally relevant approach to entanglement creation. Two-axis spin squeezing was shown to achieve the Heisenberg limit for phase sensitivity, which scales as $1/N$ and N is the particle number. However, the required Hamiltonian $H=(S_y^2-S_x^2)$ is usually not readily available in experimental systems. Here we propose an optimized control scheme to approach the Heisenberg limit with only a single-axis spin squeezing Hamiltonian combined with an external magnetic field. Essentially, the scheme consists of multiple spin squeezing with optimized parameters. And squeezing parameter achieved seems even better than two-axis squeezing. Moreover, this scheme can be employed to prepare the $-S$, $S_z=0 >$ Dicke state.

1This work was supported by the NBRPC(973 Program), the IARPA MUSIQC program, the DARPA OLE program, the ARO and the AFOSR MURI program.