Nematic phase and phase separation near saturation field in frustrated ferromagnets

HIROAKI UEDA, Tokyo Metropolitan University, TSUTOMU MOMOI, Riken — We discuss effects of quantum fluctuations on magnetization process of quantum frustrated ferromagnets. It is found that, on general grounds, in a neighborhood of a ferromagnet/antiferromagnet classical 1st-order phase boundary in zero external field, a phase separation or non-classical phase must appear slightly below the saturation field in a quantum case, if the classical AF is not an eigenstate. Besides, we study the ferromagnetic J_1-J_2 \(S = 1/2 \) Heisenberg model \((J_1 < 0)\) on the bcc lattice from the viewpoint of the magnon Bose-Einstein condensation. For \(-1.50097 \leq J_1/J_2 \leq -1.389\), the nematic phase is expected and for \(-1.389 \leq J_1/J_2 \leq -0.48\) the phase separation appears under high magnetic field.