Abstract Submitted for the MAR14 Meeting of The American Physical Society

Two-Rockets Thought Experiment FLORENTIN SMARANDACHE, University of New Mexico — Let $n \geq 2$ be identical rockets: R_1, R_2, \ldots, R_n . Each of them moving at constant different velocities respectively v_1, v_2, \ldots, v_n on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n+1 light clocks are identical and synchronized. The proper time $\Delta t'$ in each rocket is the same. Let's focus on two arbitrary rockets R_i and R_j from the previous *n* rockets. Let's suppose, without loss of generality, that their speeds verify $v_i < v_j$. (1) In the reference frame of the astronaut in R_i it is like rocket R_i is stationary and R_j moves with the speed $v_j - v_i$. Therefore the non-proper time interval as measured by the astronaut inR_i with respect to the event in R_j is dilated with the factor $D(v_j - v_i)$, i.e. $\Delta t_{i,j} = \Delta t' D(v_j - v_i)$, and rocket R_j is contracted with the factor $C(v_j - v_i)$, i.e. $L_j = L'_j C(v_j - v_i)$.(2) in the reference frame of the astronaut in R_j it is like rocket R_j is stationary and R_i moves with the speed $v_i - v_i$ in opposite direction. Therefore, similarly, the nonproper time interval as measured by the astronaut inR_i with respect to the event $\ln R_i$ is dilated with the same factor $D(v_j - v_i)$, i.e. $\Delta t_{j,i} = \Delta t' D(v_j - v_i)$, and rocket R_i is contracted with the factor $C(v_j - v_i)$, i.e. $L_i = L'_i C(v_j - v_i)$. But it is a contradiction to have time dilations in both rockets. (3) Varying i, j in $\{1, 2, \ldots, d\}$ n in this Thought Experiment we get again other multiple contradictions about time dilations. Similarly about length contractions, because we get for a rocket R_i , *n-2* different length contraction factors: $C(v_j - v_1)$, $C(v_j - v_2)$, ..., $C(v_j - v_{j-1})$, $C(v_i - v_{i+1})$, ..., $C(v_i - v_n)$ simultaneously! Which is abnormal.

> Florentin Smarandache University of New Mexico

Date submitted: 20 Sep 2013

Electronic form version 1.4