Abstract Submitted for the MAR14 Meeting of The American Physical Society

Superconductivity in the New Electron-correlated 122-layer System CaT_2Ge_2 (T = Ir, Pd, Pt)¹ H.C. KU, C.H. HUANG, C.W. CHEN, Y.B. YOU, M.F. TAI, National Tsing Hua University, Y.Y. HSU, National Taiwan Normal University — Superconductivity were observed in the new 122-layer compounds $CaIr_2Ge_2$ ($T_c = 5.4$ K) and $CaPd_2Ge_2$ ($T_c = 2.5$ K) with the BaFe₂As₂-type bodycentered-tetragonal structure (bct, space group I4/mmm). For the pseudoternary $Ca(Ir_{1-x}Pt_x)_2Ge_2$ system, superconducting transition T_c decreases from 5.4 K for $CaIr_2Ge_2$, to 3.8 K for x = 0.1, 3.0 K for x = 0.2, 2.7 K for x = 0.3, 2.2 K for x = 0.5, and below 2 K for x > 0.5. In addition to the 122-bct phase, x-ray powder diffraction pattern shows the appearance of a non-superconducting 122-monoclinic phase (space group P_{2_1}). No T_c above 2 K was observed for the single-phase monoclinic compound CaPt₂Ge₂. Higher T_c in the bct CaIr₂Ge₂ is due to a strong quasi-2D $5d_{xz,yz}$ -4p- $5d_{xz,yz}$ hybridization in the Ir-Ge-Ir layer with the squeezed-along-c-axis $IrGe_4$ tetragonal crystal field and the Ir-5d spin-orbital interaction. For the 11orthorhombic precursor $(Ir_{1-x}Pt_x)Ge$ (space group Pnma), T_c decreases from 4.8 K for IrGe, to 3.6 K for x = 0.1, 2.3 K for x = 0.2, and below 2 K for $x \ge 0.3$, with a reported low T_c of 0.4 K for PtGe.

 1 Works supported by NSC101-2112-M-007-013-MY3 and NSC100-2112-M-001-019-MY3.

H. C. Ku National Tsing Hua University

Date submitted: 30 Sep 2013

Electronic form version 1.4