Pressure-driven magnetic and structural transitions in the 122-pnictides

MICHAEL WIDOM, Carnegie Mellon University, KHANDKER QUADER, Kent State University — Pnictides of the family AFe2As2, where A is an alkali earth element, exhibit several phase transitions in their structure and magnetic order as functions of applied pressure. We employ density functional theory total energy calculations at $T=0K$ to model these transitions for the entire set of alkali earths ($A=\text{Ca, Sr, Ba, Ra}$) which form the 122 family. Three distinct types of transition occur: an enthalpic transition [1] in which the striped antiferromagnetic orthorhombic (OR-AFM) phase swaps thermodynamic stability with a competing tetragonal phase; a magnetic transition in which the OR-AFM phase loses its magnetism and orthorhombicity; a lattice parameter anomaly in which the tetragonal c-axis collapses. We identify this last transition as a “Lifshitz transition” caused by a change in Fermi surface topology. Depending on the element A, the tetragonal state exhibiting the Lifshitz transition might be metastable ($A=\text{Ca}$) or stable ($A=\text{Sr, Ba and Ra}$).

Michael Widom
Carnegie Mellon University

Date submitted: 28 Oct 2013

Electronic form version 1.4