NMR studies of phase transition form a metallic state to a Dirac-electron state in the organic system, \(\theta-(\text{BEDT-TTF})_2\text{I}_3\)\(^1\) KAZUYA MIYAGAWA, MICHIHIRO HIRATA, KYOHEI ISHIKAWA, TOMOTAKA TANIGUCHI, University of Tokyo, MASAFUMI TAMURA, Tokyo University of Science, KAZUSHI KANODA, University of Tokyo — The Dirac electron phase is realized in the bulk organic systems, \(\theta\) and \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\). The bulky nature of the system allows one to study the Dirac electrons in the spin degrees of freedom by means of NMR (K. Miyagawa et al. JPSJ \textbf{79}, 063703 (2010)). Moreover, in \(\theta\)-(BEDT-TTF)\(_2\)I\(_3\), the Dirac electron phase neighbors a metallic (superconducting) phase in a pressure-temperature phase diagram. To clarify how the Dirac phase emerges from the metallic state, we performed \(^{13}\text{C}\) NMR measurements for this material at ambient and under pressures. The angular dependence of NMR spectra demonstrates that all the molecules are equivalent (Hirata et al. PRB \textbf{85}, 195146, (2012)). The temperature dependences of Knight shift and spin-lattice relaxation rate, \(1/T_1\), hold the Korringa relation, which signifies metallicity under pressures before the transition to the Dirac phase. However, after the system undergoes a transition to the Dirac electron state, the NMR spectral shape becomes complicated indicating a structural phase transition. The analysis of the angular dependence of the NMR spectra shows the molecular arrangement changes from theta to alpha type.

\(^1\)Supported in part by JSPS KAKENHI under Grant Nos. 20110002, 25220709 and 24654101.

Kazuya Miyagawa
University of Tokyo

Date submitted: 02 Nov 2013

Electronic form version 1.4