Effect of Co doping on the structural, magnetic and electron transport properties of Mn$_2$PtSn Heusler alloy1 PARASHU KHAREL, YUNG HUH, AUSTIN NELSON, South Dakota State University, VALLOPPILLY SHAH, RALPH SKOMSKI, DAVID SELLMYER, University of Nebraska — Materials with high magnetic anisotropy and Curie temperature well above room temperature have huge potential for a range of applications including permanent magnet, high density recording and spintronic devices. Tetragonal Mn$_2$PtSn is one such Heusler compounds which has been predicted to have very high magnetic anisotropy but its low Curie temperature ($T_c = 374$ K) is a drawback [1]. Our experimental investigation of the rapidly quenched nanostructured ribbons shows that a single phase Mn$_2$PtSn in the tetragonal structure cannot be easily prepared without the substitution of an external element. We have found that a partial replacement of Pt with Co in Mn$_2$PtSn stabilizes the tetragonal structure and also improves the magnetic properties. The experimentally observed values of the room-temperature saturation magnetization (M_s) and Curie temperature (T_c) are respectively 35 emu/g and 385 K for Mn$_2$PtSn and 43 emu/g and 516 K for Mn$_2$Pt$_{0.3}$Co$_{0.7}$Sn. The effect of cobalt on the magnetic anisotropy and electron transport properties of this material will be discussed.

1This research is supported by NSF-MRSEC (DMR-0820521).