Abstract Submitted for the MAR14 Meeting of The American Physical Society

Effect of Co doping on the structural, magnetic and electron transport properties of Mn_2PtSn Heusler alloy¹ PARASHU KHAREL, YUNG HUH, AUSTIN NELSON, South Dakota State University, VALLOPPILLY SHAH, RALPH SKOMSKI, DAVID SELLMYER, University of Nebraska — Materials with high magnetic anisotropy and Curie temperature well above room temperature have huge potential for a range of applications including permanent magnet, high density recording and spintronic devices. Tetragonal Mn₂PtSn is one such Heuslar compounds which has been predicted to have very high magnetic anisotropy but its low Curie temperature $(T_c = 374 \text{ K})$ is a drawback [1]. Our experimental investigation of the rapidly quenched nanostructured ribbons shows that a single phase Mn_2PtSn in the tetragonal structure cannot be easily prepared without the substitution of an external element. We have found that a partial replacement of Pt with Co in Mn_2PtSn stabilizes the tetragonal structure and also improves the magnetic properties. The experimentally observed values of the room-temperature saturation magnetization (M_s) and Curie temperature (T_c) are respectively 35 emu/g and 385 K for Mn_2PtSn and 43 emu/g and 516 K for $Mn_2Pt_{0.3}Co_{0.7}Sn$. The effect of cobalt on the magnetic anisotropy and electron transport properties of this material will be discussed.

[1] J. Winterlik et al., Adv. Mater. 24, 6283 (2012).

¹This research is supported by NSF-MRSEC (DMR-0820521).

Parashu Kharel South Dakota State University

Date submitted: 03 Nov 2013

Electronic form version 1.4