Abstract Submitted for the MAR14 Meeting of The American Physical Society

Ultrasound Velocity Measurements in the Orbital-Degenerate Frustrated Spinel MgV_2O_4 TADATAKA WATANABE, TAKASHI ISHIKAWA, Department of Physics, College of Science and Technology (CST), Nihon University, Chiyoda, Tokyo 101-8308, Japan, SHIGEO HARA, Department of Physics, Chuo University, Bunkyo, Tokyo 101-8324, Japan, A.T.M. NAZMUL ISLAM, ELISA M. WHEELER, BELLA LAKE, Helmholtz Zentrum Berlin, GmbH, D-14109 Berlin, Germany — Magnesium vanadate spinel MgV_2O_4 is a geometrically frustrated magnet with t_{2g} -orbital degeneracy of V³⁺ (3d²), which undergoes a cubic-to-tetragonal structural transition at $T_s = 65$ K and an antiferromagnetic (AF) transition at T_N = 42 K. For MgV₂O₄, it is considered that the occurrence of t_{2q} -orbital order at T_s causes the release of frustration by the AF ordering at T_N lower than T_s . We performed ultrasound velocity measurements in high-purity single crystal of MgV_2O_4 . Temperature dependence of the tetragonal shear modulus $(C_{11} - C_{12})/2$ exhibits huge Curie-type softening in the cubic paramagnetic (PM) phase $(T > T_s)$, which should be a precursor to the cubic-to-tetragonal lattice distortion at T_s . The trigonal shear modulus $C_{44}(T)$ exhibits softening with an upturn curvature in the cubic PM phase, indicating a coupling of the lattice to magnetic excitations. These softenings suggest the coexistence of the dynamical Jahn-Teller effect and the dynamical magnetic state in the cubic PM phase.

> Tadataka Watanabe Department of Physics, College of Science and Technology (CST), Nihon University, Chiyoda, Tokyo 101-8308, Japan

Date submitted: 05 Nov 2013

Electronic form version 1.4